摘要
The basic principle of the most frequently used functional neuroimaging methods is the brain’s local dynamic regulation of blood flow. For a correct interpretation of neuroimaging results the structural and functional neurovascular coupling underlying this regulation must be well understood. Here we report quantitative anatomical data of the microvasculature in the macaque visual cortex. Formalin-fixed frozen sections of 4 animals (M. mulatta) were processed for double fluorescence immunohistochemistry. Sections were incubated with anti-collagen type IV and DAPI to stain for vessels and cell nuclei. In one additional animal, the anti-collagen procedure was combined with cytochrome oxidase staining in V1. The length density (LD), surface density (SD), volume fraction (VF) and diameter (D) of the vessels were stereologically determined. Furthermore, synchrotron-based computed tomographies (SRCT) of formalin-fixed and barium sulfate-perfused brain samples from another 2 animals were used to corroborate the histological results. In V1, the vascular d