邵凯笛在华东理工大学自动化专业攻读学士学位期间开始接受计算神经科学的培训,她加入了认知神经动力学研究所,并与潘晓川教授一起完成了关于转移熵的毕业论文。2015 年,她开始在图宾根大学和马克斯-普朗克生物控制论研究所攻读神经信息处理硕士学位,期间与 Michel Besserve 博士合作研究 PGO 波建模。2018 年,她继续攻读博士学位,师从 Nikos Logothetis 教授和 Besserve 博士,研究瞬时神经事件的生物物理和数据驱动建模以及基于事件的因果推理。2022 年获得博士学位后,她加入了国际灵长类动物脑研究中心,担任博士后研究员。
Transient dynamics, Neural events, Causal inference, Operator-theoretic framework, Data-driven modelling.
· Kaidi Shao, Nikos K. Logothetis, Michel Besserve, “Information-theoretic measures of causal influences during transient neural events”, Frontiers in Network Physiology, 2023, DOI: 10.3389/fnetp.2023.1085347
· Kaidi Shao, Juan F. Ramirez-Villegas, Nikos K. Logothetis, Michel Besserve, “A model of Ponto-Geniculo-Occipital waves supports bidirectional control of cortical plasticity across sleep-stages
”, bioRxiv, 2021, DOI: 10.1101/2021.03.16.432817
· Kaidi Shao, Nikos K. Logothetis, Michel Besserve, “Bayesian Information Criterion for Event-based Multi-trial Ensemble data”, arXiv, 2022, doi: https://doi.org/10.48550/arXiv.2204.14096
·Kaidi Shao, Nikos K. Logothetis, Michel Besserve, “Estimating the mechanisms underlying transient dynamics based on peri-event data”, A causal view on dynamical systems, NeurIPS 2022 workshop, 2022•openreview.net, https://scholar.google.de/scholar?hl=en&as_sdt=0%2C5&q=Estimating+the+mechanisms+underlying+transient+dynamics+based+on+peri-event+data&btnG=