Abstract
The cortical mechanisms mediating visual awareness are thought to exploit a large population of similarly tuned neurons explicitly representing a perceptually dominant visual pattern through changes in its mean firing rate. However, inherent limitations of population rate coding schemes such as noise detected in the correlated response variability across neurons could constrict the encoding power of such a cortical network and thus decrease the probability of this encoding strategy. Studying the differences in the noise correlation structure of a tuned population between purely sensory visual stimulation subjective visual perception could thus provide fundamental insights into the mechanisms of conscious visual perception. Here we show that in the macaque prefrontal cortex perceptual dominance under conditions of visual rivalry is accompanied by decorrelated discharges across neurons sensory tuned to the dominant stimulus, compared to their significantly correlated fluctuations when the same stimulus is perceived without competition. We propose that noise decorrelation in prefrontal cortical circuits is optimal for achieving perceptual dominance during visual awareness by substantially improving the encoding accuracy of the dominant neuronal ensemble. Our findings also provide the first electrophysiological demonstration of the contribution of prefrontal cortex to visual consciousness, a hypothesis previously suggested by theoretical models as well as human functional imaging studies.